Microfluidic device for single step measurement of protein C in plasma samples for sepsis prognosis†
Abstract
Protein C is a vitamin K dependant protein in plasma that plays an essential role in regulating the coagulation cascade and inflammatory response. As a result of its importance in these roles, it has been suggested as a biomarker for prognosis of patients affected by sepsis. Sepsis is a dysregulated host response to an infection that is the leading cause of mortality in U.S. hospitals and results in the highest cost of hospitalization. It was found that protein C concentration in non-surviving sepsis patients is significantly lower (1.8 μg mL−1) than in survivors and healthy patients who have a protein C concentration of 3.9–5.9 μg mL−1. Current methods for diagnosing sepsis rely on expensive immunoassays or functional assays that require multiple steps for isolation and activation of protein C. We demonstrate in this paper a low cost, single step assay for detection of protein C in blood plasma. This was done by combining isoelectric gates with barium-immobilized metal affinity trapping. The electric field was optimized for use with immobilized metal affinity using COMSOL simulation. The integrated device was tested with samples containing buffered protein C, protein C in the presence of high concentration bovine serum albumin and alpha 1-proteinase inhibitor, and in blood plasma with spiked protein C. The stability of the measured values was tested by monitoring the intensity of a mixture of protein C with BSA and A1PI every minute to determine that measurement after 40 minutes was optimal. The results showed that the device could be used to distinguish a reduction in protein C from 4.46 μg mL−1 to 1.96 μg mL−1 with greater than 98% confidence in plasma making it suitable for sepsis prognosis.