Issue 5, 2022

3D-Printed microfluidic device for protein purification in batch chromatography

Abstract

Modern 3D printers enable not only rapid prototyping, but also high-precision printing—microfluidic devices with channel diameters of just a few micrometres can now be readily assembled using this technology. Such devices offer a myriad of benefits (including miniaturization) that significantly reduce sample and buffer volumes and lead to lower process costs. Although such microfluidic devices are already widely used in the field of biotechnology, there is a lack of research regarding the potential of miniaturization by 3D-printed devices in lab-scale chromatography. In this study, the efficacy of a 3D-printed microfluidic device which provides a substantially lower dead-volume compared to established chromatography systems is demonstrated for batch purification applications. Furthermore, this device enables straightforward integration of various components (such as microfluidic valves and chromatographic units) in an unprecedentedly flexible fashion. Initial proof-of-concept experiments demonstrate successful gradient elution with bovine serum albumin (BSA), and the purification of a pharmaceutically relevant IgG monoclonal antibody (mAb).

Graphical abstract: 3D-Printed microfluidic device for protein purification in batch chromatography

Article information

Article type
Paper
Submitted
14 Dec 2021
Accepted
27 Jan 2022
First published
27 Jan 2022
This article is Open Access
Creative Commons BY-NC license

Lab Chip, 2022,22, 986-993

3D-Printed microfluidic device for protein purification in batch chromatography

T. Habib, C. Brämer, C. Heuer, J. Ebbecke, S. Beutel and J. Bahnemann, Lab Chip, 2022, 22, 986 DOI: 10.1039/D1LC01127H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements