Issue 11, 2022

Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression

Abstract

Fluid shear stress (FSS) is crucial in cancer cell survival and tumor development. Noteworthily, cancer cells are exposed to several degrees of FSS in the tumor microenvironment and during metastasis. Consequently, the stemness marker expression in cancer cells changes with the FSS signal, although it is unclear how it varies with different magnitudes and during metastasis. The current work explores the stemness and drug resistance characteristics of the cervical cancer cell line HeLa in a microfluidic device with a wide range of physiological FSS. Hence, the microfluidic device was designed to achieve a logarithmic flow distribution in four culture chambers, realizing four orders of biological shear stress on a single chip. The cell cycle analysis demonstrated altered cell proliferation and mitotic arrest after FSS treatment. In addition, EdU staining revealed increased cell proliferation with medium to low FSS, whereas high shear had a suppressing effect. FSS increased competence to withstand higher intracellular ROS and mitochondrial membrane potential in HeLa. Furthermore, stemness-related gene (Sox2, N-cadherin) and cell surface marker (CD44, CD33, CD117) expressions were enhanced by FSS mechanotransduction in a magnitude-dependent manner. In summary, these stemness-like properties were concurrent with the drug resistance capability of HeLa towards doxorubicin. Overall, our microfluidic device elucidates cancer cell survival and drug resistance mechanisms during metastasis and in cancer relapse patients.

Graphical abstract: Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2021
Accepted
19 Apr 2022
First published
11 May 2022

Lab Chip, 2022,22, 2200-2211

Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression

S. K. Dash, B. Patra, V. Sharma, S. K. Das and R. S. Verma, Lab Chip, 2022, 22, 2200 DOI: 10.1039/D1LC01139A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements