Issue 16, 2022

Ion-concentration-polarization-assisted photocatalytic reactor for highly efficient water purification

Abstract

Photocatalysis, which utilizes solar energy to electrochemically decompose water pollutants into harmless products, has attracted considerable attention to address serious environmental issues. The photocatalytic effect can be enhanced using an external electric field owing to the inhibition of the recombination of photoexcited electrons and holes. However, the typical linear potential bias that induces a small potential drop across a thin photocatalyst film exhibits a limited photocatalytic reaction. Herein, we propose an ion-concentration-polarization-assisted photocatalytic reactor that generates a nonlinear electric field across the microchannel of this system, which enables an 85.5% increase in the reaction rate compared to that achieved using a linear potential, and a high reaction rate constant up to 12.7 min−1 is achieved. The nonlinear electric field induced by concentration polarization, the nanofluidic electrokinetic phenomenon, results in a considerably increased potential drop across the photocatalyst layer such that the recombination of photoexcited electrons and holes may be efficiently prevented. The facilitated photocatalytic reaction is verified with the plastic film degradation. This proposed enhancing mechanism shows a novel application of nanofluidics for improving the photocatalytic effect, and the potential to be a new class of platform for a photocatalytic reactor owing to its simple configuration and fabrication procedures.

Graphical abstract: Ion-concentration-polarization-assisted photocatalytic reactor for highly efficient water purification

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2022
Accepted
22 Jun 2022
First published
27 Jun 2022

Lab Chip, 2022,22, 2962-2970

Ion-concentration-polarization-assisted photocatalytic reactor for highly efficient water purification

C. Wang, J. Jeon, E. Seo and J. Park, Lab Chip, 2022, 22, 2962 DOI: 10.1039/D2LC00140C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements