Issue 14, 2022

A point-of-care microfluidic channel-based device for rapid and direct detection of fibrinogen in whole blood

Abstract

Hemorrhage is the leading cause of preventable death in civilian and battlefield traumatic injuries. Patients with severe traumatic hemorrhagic shock are more likely to be deficient in fibrinogen than those with other coagulation factors, and hypofibrinogenemia is an independent risk factor for mortality. Thus, rapid detection of fibrinogen levels is of great importance in these patients during damage control resuscitation. Plasma is used as an analyte in fibrinogen detection, which restricts the use of existing devices in emergencies. To meet the needs of on-site detection, we developed a point-of-care microfluidic channel-based device for direct measurement of fibrinogen concentration in whole blood. In our method, thrombin is dispersed on a reaction strip to initiate conversion of fibrinogen to fibrin. The permeability of the resulting blood clots depends on the fibrinogen level. A hydrophobic plastic protection flake between the reaction strip and a wicking strip is then removed to allow flow of unclotted blood. The rate of blood flow along the wicking strip was inversely related to the fibrinogen concentration. The whole process could be completed in as fast as 5 minutes for a whole blood sample size of 150 μL, and yielded accurate results ranging from 0 to 4 g L−1, which were unaffected by Ca2+, blood lipids, hematocrit, warfarin and tissue plasminogen activators (tPAs). Results using clinical whole blood samples were also highly consistent with those using an automatic coagulation analyzer, yielding a Pearson correlation coefficient of up to 0.919. This approach has potential for allowing rapid diagnosis of fibrinogen concentration in critically ill bleeding patients in different settings, thus helping to judge the suitability of fibrinogen replacement therapy (FRT) in cases of emergency bleeding and in patients at risk of thrombosis due to hyperfibrinogenemia.

Graphical abstract: A point-of-care microfluidic channel-based device for rapid and direct detection of fibrinogen in whole blood

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2022
Accepted
10 Jun 2022
First published
15 Jun 2022

Lab Chip, 2022,22, 2714-2725

A point-of-care microfluidic channel-based device for rapid and direct detection of fibrinogen in whole blood

Q. Ban, Y. Zhang, Y. Li, D. Cao, W. Ye, L. Zhan, D. Wang and X. Wang, Lab Chip, 2022, 22, 2714 DOI: 10.1039/D2LC00437B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements