Issue 21, 2022

An integrated microfluidic device for multiplexed imaging of spatial gene expression patterns of Drosophila embryos

Abstract

To reveal the underlying mechanism of the biological function of multicellular systems, it is important to obtain comprehensive spatial gene expression profiles. Among the emerging single-cell spatial-omics techniques, immunofluorescence (IF)-based iterative multiplexed imaging is a promising approach. However, the conventional method is usually costly, time-consuming, labor-intensive, and has low throughput. Moreover, it has yet to be demonstrated in intact multicellular organisms. Here, we developed an integrated microfluidic system to overcome these challenges for quantitatively measuring multiple protein profiles sequentially in situ in the same Drosophila embryo. We designed an array of hydrodynamic trapping sites to automatically capture over ten Drosophila embryos with orientation selectivity at more than 90% trapping rates. We also optimized the geometry of confinement and the on-chip IF protocol to achieve the same high signal-to-noise ratio as the off-chip traditional IF experiments. Moreover, we developed an efficient de-staining protocol by combining on-chip antibody stripping and fluorophore bleaching. Using the same secondary antibody to sequentially stain different genes, we confirmed that the de-stained genes have no detectable interference with the subsequently stained genes, and the gene expression profiles are preserved after multiple cycles of staining and de-staining processes. This preliminary test shows that our newly developed integrated microfluidic system can be a powerful tool for multiplexed imaging of Drosophila embryos. Our work opens a new avenue to design microfluidic chips for multicellular organisms and single-cell spatial-omics techniques.

Graphical abstract: An integrated microfluidic device for multiplexed imaging of spatial gene expression patterns of Drosophila embryos

Supplementary files

Article information

Article type
Paper
Submitted
07 Jun 2022
Accepted
18 Sep 2022
First published
19 Sep 2022

Lab Chip, 2022,22, 4081-4092

An integrated microfluidic device for multiplexed imaging of spatial gene expression patterns of Drosophila embryos

H. Zhu, W. Shen, C. Luo and F. Liu, Lab Chip, 2022, 22, 4081 DOI: 10.1039/D2LC00514J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements