Issue 7, 2022

The antimicrobial effect of calcium-doped titanium is activated by fibrinogen adsorption

Abstract

Directly targeting bacterial cells is the present paradigm for designing antimicrobial biomaterial surfaces and minimizing device-associated infections (DAIs); however, such pathways may create problems in tissue integration because materials that are toxic to bacteria can also be harmful to mammalian cells. Herein, we report an unexpected antimicrobial effect of calcium-doped titanium, which itself has no apparent killing effect on the growth of pathogenic bacteria (Pseudomonas aeruginosa, Pa, ATCC 27853) while presenting strong inhibition efficiency on bacterial colonization after fibrinogen adsorption onto the material. Fine X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy analyses reported calcium-dependent shifts of the binding energy in nitrogen and oxygen involved groups and wavenumbers in the amide I and II bands of the adsorbent fibrinogen, demonstrating that locally delivered calcium can react with the carboxy-terminal regions of the Aα chains and influence their interaction with the N-termini of the Bβ chains in fibrinogen. These reactions facilitate the exposure of the antimicrobial motifs of the protein, indicating the reason for the surprising antimicrobial efficacy of calcium-doped titanium. Since protein adsorption is an immediate intrinsic step during the implantation surgery, this finding may shift the present paradigm on the design of implantable antibacterial biomaterial surfaces.

Graphical abstract: The antimicrobial effect of calcium-doped titanium is activated by fibrinogen adsorption

Supplementary files

Article information

Article type
Communication
Submitted
14 Dec 2021
Accepted
03 May 2022
First published
04 May 2022

Mater. Horiz., 2022,9, 1962-1968

The antimicrobial effect of calcium-doped titanium is activated by fibrinogen adsorption

H. Cao, T. J. Dauben, C. Helbing, Z. Jia, Y. Zhang, M. Huang, L. Müller, S. Gu, X. Zhang, H. Qin, K. Martin, J. Bossert and K. D. Jandt, Mater. Horiz., 2022, 9, 1962 DOI: 10.1039/D1MH02009A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements