Issue 4, 2022

Assessing the electrical activity of individual ZnO nanowires thermally annealed in air

Abstract

ZnO nanowires (NWs) are very attractive for a wide range of nanotechnological applications owing to their tunable electron concentration via structural and surface defect engineering. A 2D electrical profiling of these defects is necessary to understand their restructuring dynamics during engineering processes. Our work proposes the exploration of individual ZnO NWs, dispersed on a SiO2/p++-Si substrate without any embedding matrix, along their axial direction using scanning capacitance microscopy (SCM), which is a useful tool for 2D carrier profiling. ZnO NWs are hydrothermally grown using 0–20 mM ammonium hydroxide (NH4OH), one of the reactants of the hydrothermal synthesis, and then annealed in a tube oven at 350 °C/1.5–15 h and 450 °C/15 h. While the as-grown ZnO NWs are highly conductive, the annealed ones exhibit significant SCM data with a high signal-to-noise ratio and temperature-dependent uniformity. The SCM signal of ZnO NWs is influenced by both their reduced dimensionality and the electron screening degree inside them. The electrical activity of ZnO NWs is only observed below a critical defect concentration that depends on the annealing temperature. Optimal SCM signals of 200 and 147 mV are obtained for samples with 0 and 20 mM NH4OH, respectively, and annealed at 350 °C/15 h. The corresponding electron concentrations of 3.27 × 1018 and 4.58 × 1018 cm−3 were estimated from the calibration curve, respectively. While thermal treatment in air of ZnO NWs is an effective approach to tune the defect density, 2D electrical mapping enables identifying their optimal electrical characteristics, which could help to boost the performance of final devices exploiting their coupled semiconducting–piezoelectric properties.

Graphical abstract: Assessing the electrical activity of individual ZnO nanowires thermally annealed in air

Supplementary files

Article information

Article type
Paper
Submitted
11 Dec 2021
Accepted
31 Dec 2021
First published
12 Jan 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2022,4, 1125-1135

Assessing the electrical activity of individual ZnO nanowires thermally annealed in air

M. Bah, T. S. Tlemcani, S. Boubenia, C. Justeau, N. Vivet, J. Chauveau, F. Jomard, K. Nadaud, G. Poulin-Vittrant and D. Alquier, Nanoscale Adv., 2022, 4, 1125 DOI: 10.1039/D1NA00860A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements