Issue 14, 2022

Improving performance of monolayer arsenene tunnel field-effect transistors by defects

Abstract

We systematically investigate the transport properties of monolayer arsenene tunneling field-effect transistors (TFETs) along the armchair and zigzag directions using first-principles calculations based on density functional theory (DFT) combined with the non-equilibrium Green's function (NEGF) approach. We introduce five types of defects at the source-channel interface and study their influences on the device performance. The pristine arsenene TFETs along the armchair direction have large ON-state currents due to the small effective masses, but still cannot meet the International Technology Roadmaps of Semiconductor 2022 (ITRS 2022) requirements for high performance (HP) devices. The adsorption of one and two H atoms can significantly enhance the ON-state currents to above 1412 μA μm−1 and reduce subthreshold swing (SS) to below 60 mV decade−1 for both n- and p-type devices, satisfying the ITRS 2022 requirements for HP devices. Besides, the p-type As and the n-type Li adatoms can improve the performance of p-type and n-type devices, respectively. The pristine arsenene TFETs along the zigzag direction with low ON-state currents already meet the ITRS 2022 requirements for low-power (LP) devices. The performance of the p-type TFETs as LP devices can be improved by p-type SV and the As adatom by increasing the ON-state currents and/or reducing the SS. On the other hand, the adsorption of one H adatom can remarkably increase the ON-state current of the p-type TFET to 1563 μA μm−1 and reduce SS to 34 mV decade−1, allowing the device to work as an HP device. We further confirm that the enhancement of the ON-state currents is due to the shortening of the band-to-band tunneling path through the defect induced gap states. Our calculations provide a theoretical guide to improve the performance of TFETs based on arsenene or other monolayer materials by suitable defects.

Graphical abstract: Improving performance of monolayer arsenene tunnel field-effect transistors by defects

Supplementary files

Article information

Article type
Paper
Submitted
09 Feb 2022
Accepted
09 Jun 2022
First published
17 Jun 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2022,4, 3023-3032

Improving performance of monolayer arsenene tunnel field-effect transistors by defects

S. Song, J. Gong, H. Wen and S. Yang, Nanoscale Adv., 2022, 4, 3023 DOI: 10.1039/D2NA00093H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements