Issue 1, 2022

Exploring the mechanical properties of nanometer-thick elastic films through micro-drop impinging on large-area suspended graphene

Abstract

In this work, the dependence of effective Young's modulus on the thickness of suspended graphene was confirmed through a drop impingement method. Large area suspended graphene (LSG) layers with a diameter of up to 400 μm and a nanometer thickness were prepared through transferring chemical vapor deposition grown graphene from copper substrates. 4, 8, and 12-layer LSG samples were found to be crumpled yet defect-free. The mechanical properties of LSG were first studied by observing its interaction with impinging droplets from an ink-jet nozzle. First, the effective Young's modulus was calculated by fitting the instant deformation captured by high speed photography within microseconds. Next, droplets deposited on LSG caused deformation and generated wrinkles and the effective Young's modulus was calculated from the number of wrinkles. The above methods yielded effective Young's modulus values ranging from 0.3 to 3.4 TPa. The results from these methods all indicated that the effective Young's modulus increases with the decreasing thickness or size of suspended graphene layers. Moreover, the crumpled LSG yields higher effective Young's modulus than ideal flat graphene. These comprehensive results from complementary methodologies with precise LSG thickness control down to the nanometer scale provide good evidence to resolve the debate on the thickness dependence of mechanical strength for LSG.

Graphical abstract: Exploring the mechanical properties of nanometer-thick elastic films through micro-drop impinging on large-area suspended graphene

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2021
Accepted
07 Nov 2021
First published
08 Nov 2021

Nanoscale, 2022,14, 42-48

Exploring the mechanical properties of nanometer-thick elastic films through micro-drop impinging on large-area suspended graphene

Y. Liao, S. Peng, K. Chuang, Y. Liao, Y. Kuramitsu and W. Woon, Nanoscale, 2022, 14, 42 DOI: 10.1039/D1NR05918A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements