Magnetoelectric coupling effects on the band alignments of multiferroic In2Se3–CrI3 trilayer heterostructures†
Abstract
Due to unique magnetoelectric coupling effects, two-dimensional (2D) multiferroic van der Waals heterostructures (vdWHs) are promising for next-generation information processing and storage devices. Here, we design theoretically multiferroic In2Se3/CrI3 trilayer vdWHs with different stacking patterns. For the CrI3/In2Se3/CrI3 trilayer vdWHs, whether ferroelectric upward or downward polarization, type-I and type-II band alignments are formed for spin-up and spin-down channels. However, for the CrI3/In2Se3/In2Se3 trilayer vdWHs, downward polarization induces the type-III band alignment, which is typical for spin-tunnel transistors. Moreover, nonvolatile ferroelectric polarization and stacking patterns can induce the conversion between a unipolar semiconductor and a bipolar (unipolar) half-metal. These results provide a possible route to realize nanoscale multifunctional spintronic devices based on 2D multiferroic systems.