Two-dimensional InSb/GaAs- and InSb/InP-based tandem photovoltaic device with matched bandgap†
Abstract
The past several years have witnessed remarkable research efforts to develop high-performance photovoltaics (PVs), to curtail the energy crisis by avoiding dependence on traditional fossil fuels. In this regard, there is an urgent need to accelerate research progress on new low-dimensional semiconductors with superior electronic and optical properties. Herein, combining abundant related PV experimental data in the literature and our systematic theoretical calculations, we propose two-dimensional (2D) InSb/GaAs and InSb/InP-based tandem PVs with high solar-to-electric efficiency up to near 30.0%. Firstly, according to first-principles calculations, the stability, electronic and optical properties of single-layer group-III–V materials (XY, X = Ga and In, Y = N, P, As, Sb, and Bi) are systematically introduced. Next, due to the high bandgap (Eg) of GaAs and InP being a perfect match with the low Eg of InSb, InSb/GaAs- and InSb/InP-based tandem PVs are constructed. In addition, the complementary absorption spectra of these two subcells can facilitate the achievement of high tandem power conversion efficiency. Furthermore, we have analyzed in detail the influencing factors for PCE and the physical mechanism of the optimized match between the top and bottom subcells in the tandem configurations. Our designed 2D-semiconductor-based PVs can be expected to bring a new perspective for future commercialized high-efficiency energy devices.