Issue 16, 2022

Selective synthesis of Kagome nanoporous graphene on Ag(111) via an organometallic template

Abstract

Kagome nanoporous graphenes (NPGs) are fascinating due to their exotic electronic and magnetic properties. The emerging on-surface synthesis (mostly on metal surfaces) provides a new opportunity to fabricate Kagome NPGs with atomic resolution. Previously the Kagome NPGs synthesized on surfaces were largely heteroatom-doped and suffer from morphological defects (evidently on metal surfaces). The on-surface synthesis of pristine Kagome NPG with improved structural quality is extremely desirable. In this paper, using a halogenated precursor, we report a bottom-up fabrication of pristine NPG with Kagome topology on Ag(111) via classic Ullmann coupling. The templating effect of organometallic (OM) intermediates for subsequent covalent coupling is determined by comparing the OM phase and resultant covalent product. The reaction parameters are found to have a significant impact on the topology and quality of OM intermediates. Specifically, a higher surface temperature and lower evaporation rate favor the growth of better-quality and higher-yield OM Kagome NPGs. The covalent Kagome NPGs obtained by further annealing of these OM networks are affected likewise due to the template effect of OM intermediates. Our work further confirms the generality of the OM template effect. It also offers a novel method to achieve the selective synthesis of Kagome lattice networks.

Graphical abstract: Selective synthesis of Kagome nanoporous graphene on Ag(111) via an organometallic template

Supplementary files

Article information

Article type
Paper
Submitted
11 Dec 2021
Accepted
21 Mar 2022
First published
22 Mar 2022

Nanoscale, 2022,14, 6239-6247

Selective synthesis of Kagome nanoporous graphene on Ag(111) via an organometallic template

X. Li, D. Han, T. Qin, J. Xiong, J. Huang, T. Wang, H. Ding, J. Hu, Q. Xu and J. Zhu, Nanoscale, 2022, 14, 6239 DOI: 10.1039/D1NR08136E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements