Issue 20, 2022

MBE-grown ultrathin PtTe2 films and their layer-dependent electronic structures

Abstract

2D platinum ditelluride (PtTe2) has received significant attention for 2D photodetector applications due to its novel physical properties. One of the critical factors that affect device performance is the film quality. Here, using molecular beam epitaxy, we investigate the role of growth temperature in determining the film quality of PtTe2 on highly oriented pyrolytic graphite, and unveil its layer-dependent electronic properties by X-ray photoelectron spectroscopy, Raman spectroscopy, and scanning tunneling microscopy/spectroscopy (STM/STS), as well as density functional theory (DFT) calculations. At low growth temperature (≤250 °C), the PtTe2 film prefers a stack of the monolayer and bilayer, while at ≈300 °C large-area continuous bilayer films are formed. In contrast, high growth temperature (>300 °C) leads to the formation of thick films with high Te deficiency and poor crystallinity. Theoretical calculations confirm the higher thermal stability of bilayer PtTe2 over other layer numbers above a critical crystal size of ≈100 nm2. STS shows that PtTe2 is a semiconductor in the monolayer with a bandgap of 0.80 ± 0.05 eV, and changes to a semimetal from the bilayer. DFT calculations support our experimental results and suggest an indirect bandgap structure of the monolayer. This work provides a systematic study of the layer-dependent electronic structure of 2D PtTe2, and demonstrates that with appropriate substrate and growth temperature choices, high-quality ultrathin PtTe2 films can be obtained, important for device applications.

Graphical abstract: MBE-grown ultrathin PtTe2 films and their layer-dependent electronic structures

Supplementary files

Article information

Article type
Paper
Submitted
17 Feb 2022
Accepted
18 Apr 2022
First published
19 Apr 2022

Nanoscale, 2022,14, 7650-7658

MBE-grown ultrathin PtTe2 films and their layer-dependent electronic structures

L. Zhang, T. Yang, Arramel, Y. P. Feng, A. T. S. Wee and Z. Wang, Nanoscale, 2022, 14, 7650 DOI: 10.1039/D2NR00944G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements