Issue 43, 2022

In-depth insight into the Yb3+ effect in NaErF4-based host sensitization upconversion: a double-edged sword

Abstract

NaErF4 is the most extensively studied host for self-sensitized upconversion (UC), and Yb3+ is the most commonly used energy absorber. It has been reported that the red luminescence of Er3+ can be enhanced by introducing Yb3+ into the NaErF4 host lattice, where Yb3+ ions serve as trapping centers to confine the excitation energy. Also, it has been pointed out that the Yb3+ doping in the shell of NaErF4-hosted core–shell nanocrystals can further improve the red emission intensity. Conversely, it can be argued that the Yb3+ doping in the shell always results in the luminescence quenching of the NaErF4 core. These imply that the impact of Yb3+ on NaErF4-based host-sensitized UC is rather complicated and must be probed deeply. In this study, we thoroughly discussed the effect of Yb3+ located in the core/shell on the NaErF4-based host sensitization UC and afforded the related mechanism interpretations. In the NaErF4 core nanocrystals, the green-dominated UCL presented an enhancement on increasing the concentration of the Yb3+ dopant owing to the promoted energy harvesting for luminescence. Furthermore, the emission properties of NaErF4:10%Yb shelled with diverse inert layers were also investigated, and the intensity difference of these core-inert shell nanoparticles could be explained by the lattice mismatch and shell thickness. In NaErF4:10%Yb@NaYF4:Yb with variable Yb3+ doping in the shell, the red-dominated UCL was generally weakened with more Yb3+ localized in the shell, which was ascribed to the competition of energy pooling and energy dissipation of Yb3+ in the outer layer. Therefore, Yb3+ ions wield a two-sided influence (termed a “double-edged sword”) on the UC emissions of the Er3+ host. Additionally, we demonstrated the application potential of such UCNPs in water sensing and high-level anti-counterfeiting. This work offers an in-depth insight into the UC mechanism of Yb3+-doped NaErF4 nanocrystals and inspires the engineering of novel luminescent materials with distinguished properties.

Graphical abstract: In-depth insight into the Yb3+ effect in NaErF4-based host sensitization upconversion: a double-edged sword

Supplementary files

Article information

Article type
Paper
Submitted
02 Apr 2022
Accepted
08 Oct 2022
First published
10 Oct 2022

Nanoscale, 2022,14, 16156-16169

In-depth insight into the Yb3+ effect in NaErF4-based host sensitization upconversion: a double-edged sword

Y. Wang, S. Zhou, F. Sun, P. Hu, W. Zhong and J. Fu, Nanoscale, 2022, 14, 16156 DOI: 10.1039/D2NR01828D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements