Enhanced radioluminescence of yttrium pyrosilicate nanoparticles via rare earth multiplex doping
Abstract
A series of multi-doped yttrium pyrosilicate (YPS) nanoparticles were synthesized using a high temperature multi-composite reactor, and used to explore the radioluminescent properties that have potential for biological applications. The luminescent activators explored in this work were cerium, terbium, and europium. A series of mono-doped YPS nanoparticles were synthesized that have optical and X-ray luminescent properties that span the entire visible spectrum. Energy transfer experiments were investiagted to increase the photo- and X-ray luminescence of terbium and europium. Cerium was used as a sensitizer for terbium where X-ray luminescence was enhanced. Similar results were also obtained using cerium as a sensitizer and terbium as an energy bridge for europium. By leveraging different energy transfer mechanisms X-ray luminescence can be enhanced for YPS nanoparticles.