Lithium confinement and dynamics in hexagonal and monoclinic tungsten oxide nanocrystals: a 7Li solid state NMR study†
Abstract
Mixed-valence tungsten bronzes AxWO3 (A = alkali metal, NH4+, etc.) are a series of compounds with adaptive structural and compositional features that make them a hot research topic in thermoelectrics, electrochromics, catalysis or energy applications in battery electrodes. The mixed hexagonal lithium ammonium bronze Lix(NH4)yWO3 is a new member of this structural family whose properties are compared to those of the pure hexagonal tungsten bronze (NH4)xWO3. Surface and structural (nanoconfined) Li+ cations were characterized by 7Li single pulse excitation and 1H–7Li cross-polarization (CP) NMR experiments. CP build-up curves and two-dimensional heteronuclear correlation solid-state NMR techniques provide information about the spatial connectivity between different proton and Li+ species. At 500 °C the bronze structurally transforms from the hexagonal to a monoclinic phase, and defects are formed that are characterized through the Li+ environment. 7Li exchange spectroscopy (EXSY) NMR experiments provide information about the chemical exchange between the lithium species. The measured 7Li T1 and T2 relaxation time constants and the T1/T2 ratio allow characterizing the local strength of Li+ binding.