Casted MoS2 nanostructures and their Raman properties†
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been widely investigated for optoelectronic applications. Here, by employing the nanocasting method, molybdenum disulfide (MoS2) nanostructures, including supercrystals, nanoparticles and nanowires, are synthesized with curved features by changing the precursor concentration and template types. The Raman properties of different MoS2 nanostructures are investigated by varying the laser power under both resonant and non-resonant excitations. The defect disorder induced LA(M) mode and other silent Raman modes in planar 2D materials are clearly observed under the resonant excitation. We believe that the varying optical properties of TMDC nanostructures will greatly broaden the optoelectronic applications of 2D materials.