Issue 33, 2022

Solution combustion synthesis: the relevant metrics for producing advanced and nanostructured photocatalysts

Abstract

The current developments and progress in energy and environment-related areas pay special attention to the fabrication of advanced nanomaterials via green and sustainable paths to accomplish chemical circularity. The design and preparation methods of photocatalysts play a prime role in determining the structural, surface characteristics and optoelectronic properties of the final products. The solution combustion synthesis (SCS) technique is a relatively novel, cost-effective, and efficient method for the bulk production of nanostructured materials. SCS-fabricated metal oxides are of great technological importance in photocatalytic, environmental and energy applications. To date, the SCS route has been employed to produce a large variety of solid materials such as metals, sulfides, carbides, nitrides and single or complex metal oxides. This review intends to provide a holistic perspective of the different steps involved in the chemistry of SCS of advanced photocatalysts, and pursues several SCS metrics that influence their photocatalytic performances to establish a feasible approach to design advanced photocatalysts. The study highlights the fundamentals of SCS and the importance of various combustion parameters in the characteristics of the fabricated photocatalysts. Consequently, this work deals with the design of a concise framework to link the fine adjustment of SCS parameters for the development of efficient metal oxide photocatalysts for energy and environmental applications.

Graphical abstract: Solution combustion synthesis: the relevant metrics for producing advanced and nanostructured photocatalysts

Article information

Article type
Review Article
Submitted
16 May 2022
Accepted
08 Jul 2022
First published
15 Jul 2022
This article is Open Access
Creative Commons BY license

Nanoscale, 2022,14, 11806-11868

Solution combustion synthesis: the relevant metrics for producing advanced and nanostructured photocatalysts

F. Siddique, S. Gonzalez-Cortes, A. Mirzaei, T. Xiao, M. A. Rafiq and X. Zhang, Nanoscale, 2022, 14, 11806 DOI: 10.1039/D2NR02714C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements