Anti-KIT DNA aptamer-conjugated porous silicon nanoparticles for the targeted detection of gastrointestinal stromal tumors†
Abstract
Evaluation of Gastrointestinal Stromal Tumors (GIST) during initial clinical staging, surgical intervention, and postoperative management can be challenging. Current imaging modalities (e.g., PET and CT scans) lack sensitivity and specificity. Therefore, advanced clinical imaging modalities that can provide clinically relevant images with high resolution would improve diagnosis. KIT is a tyrosine kinase receptor overexpressed on GIST. Here, the application of a specific DNA aptamer targeting KIT, decorated onto a fluorescently labeled porous silicon nanoparticle (pSiNP), is used for the in vitro & in vivo imaging of GIST. This nanoparticle platform provides high-fidelity GIST imaging with minimal cellular toxicity. An in vitro analysis shows greater than 15-fold specific KIT protein targeting compared to the free KIT aptamer, while in vivo analyses of GIST-burdened mice that had been injected intravenously (IV) with aptamer-conjugated pSiNPs show extensive nanoparticle-to-tumor signal co-localization (>90% co-localization) compared to control particles. This provides an effective platform for which aptamer-conjugated pSiNP constructs can be used for the imaging of KIT-expressing cancers or for the targeted delivery of therapeutics.