Nonionic star polymers with upper critical solution temperature in aqueous solutions†
Abstract
We report synthesis of temperature-responsive linear and star poly(2-ureido aminoethyl methacrylates) (PUEMs) of matched molecular weights, their phase transitions in aqueous solutions and interactions with hydrogen bonding and hydrophobic small molecules. PUEMs with number of arms up to 8 were synthesized via the activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) technique using the core-first approach. The degrees of branching were determined using gel permeation chromatography (GPC) equipped with the multi-angle laser light scattering and viscometry detectors. The polymer molecular architecture had a neglectable effect on the upper critical solution temperature (UCST) behavior in aqueous solutions, while the presence of a strong hydrogen-bonded acceptor – dimethyl sulfoxide (DMSO) – suppressed the transition temperature for both linear and star UCST polymers. Importantly, star PUEMs showed an enhanced ability of trapping model drug molecules – proflavine and pyrene. In particular, an increase in polymer branching led to 4.5-fold more efficient proflavine trapping and stronger binding of pyrene molecules within the hydrophobic domains of star polymers below their UCST. The trapped molecules could be then fully released from the star polymers upon temperature increase, demonstrating potential for controlled delivery applications.