Issue 23, 2022

Recognition-guided sulfate extraction and transport using tripodal hexaurea receptors

Abstract

The separation of sulfate anions (SO42−) from water is a great challenge due to its high hydration energy. Using synthetic receptors that are designed with a size-complementary cavity for sulfate binding, sulfate anions could be extracted from water to the organic phase via liquid–liquid extraction (LLE) method. To understand the correlation between sulfate binding (recognition chemistry) and sulfate-separation efficiency across two phases, herein we prepared a family of tripodal hexaurea receptors bearing various terminal substitutions: 4-nitrophenyl substituted L1, 4-methylphenyl substituted L2, and hexyl-chain-substituted L3. The crystal structures of [L2·SO4]2− and [L3·SO4]2− and 1H NMR titrations suggested that the sulfate-binding affinity of these receptors were terminal substitution-dependent, where the H-bonding strength and secondary C–H⋯π interactions were regulated. Comprehensive LLE studies indicated that all three receptors displayed highly efficient sulfate extraction with receptor-loading dependence and concentration independence. Relative sulfate-extraction efficiency was consistent with the sulfate-binding affinity of these receptors. Notably, using the hexyl-chain-substituted receptor L3, sulfate anions could be extracted and released by acidification for several cycles. Typical U-tube transport experiments demonstrated that over 70% of sulfate anions could be transported from the source phase to the receiving phase in 3 days across a bulk liquid membrane, which comprised the receptor L3. Our work shows a paradigm of how the sulfate-recognition property is correlated with sulfate separation via LLE, which may help to understand and promote the development of supramolecular recognition-based systems for achieving desired separations.

Graphical abstract: Recognition-guided sulfate extraction and transport using tripodal hexaurea receptors

Supplementary files

Article information

Article type
Research Article
Submitted
15 Sep 2022
Accepted
10 Oct 2022
First published
11 Oct 2022

Inorg. Chem. Front., 2022,9, 6091-6101

Recognition-guided sulfate extraction and transport using tripodal hexaurea receptors

S. Chen, S. Yu, W. Zhao, L. Liang, Y. Gong, L. Yuan, J. Tang, X. Yang and B. Wu, Inorg. Chem. Front., 2022, 9, 6091 DOI: 10.1039/D2QI01991D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements