Issue 8, 2022, Issue in Progress

Core–shell structured Li–Fe electrode for high energy and stable thermal battery

Abstract

The thermal battery, a key source for powering defensive power systems, employs Li alloy-based anodes. However, the alloying increases the reduction potential of Li which lowers the overall working voltage and energy output. To overcome these issues, Li alloy must be replaced with pure Li. Utilizing pure Li requires a structure that can hold liquefied Li because the working temperature for the thermal battery exceeds the melting point of Li. The liquefied Li can leak out of the anode, causing short-circuit. A Li–Fe electrode (LiFE) in which Fe powder holds liquefied Li has been developed. In LiFE, higher Li content can lead to higher energy output but increases the risk of Li leakage. Thus, Li content in the LiFE has been limited. Here, we demonstrate a novel core–shell electrode structure to achieve a higher energy output. The proposed core–shell LiFE incorporates a high Li content core and a low Li content shell; high energy comes from the core and the shell prevents the Li from leakage. The fabricated core–shell structured electrode demonstrates the high energy of 9074 W s, an increase by 1.66 times compared to the low Li content LiFE with the conventionally used Li content (5509 W s).

Graphical abstract: Core–shell structured Li–Fe electrode for high energy and stable thermal battery

Article information

Article type
Paper
Submitted
14 Jun 2021
Accepted
01 Feb 2022
First published
09 Feb 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 4795-4804

Core–shell structured Li–Fe electrode for high energy and stable thermal battery

J. Shin, H. Kang, Y. Lee, S. H. Ha and E. Cho, RSC Adv., 2022, 12, 4795 DOI: 10.1039/D1RA04588A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements