Issue 1, 2022

Debunking the essential effect of temperature and voltage on the current curve and the nanotube morphology

Abstract

The formation mechanism of anodic TiO2 nanotubes remains to be unclear till now. Many researchers study the influence of temperatures above 0 °C instead of below 0 °C. Few papers before have explained the relationship between the current–time curve and the morphology of the nanotubes. In this study, the innovative ‘oxygen bubble model’ and the ionic current and electronic current theories were introduced to explain the growth of nanotubes below 0 °C. The length of anodic TiO2 nanotubes at 15 °C, 0 °C, −10 °C were 1.28 μm, 0.93 μm and 0.21 μm, respectively, but the diameter of anodic TiO2 nanotubes was almost the same, at about 164 nm. When the temperature was low, the magnitude of electronic current and the ionic current was small, the mold effect was weak and nanotubes could not be formed. At the same time, this study shows that the dissolution reaction of the field-assisted solution theory has no electron gain or loss, and it has nothing to do with the current, which negates the field-assisted dissolution theory. A novel two-step anodization was used to verify the conclusion. It was found that nanotubes could be obtained when the anodizing current was decreasing or increasing. Also, ginseng-shaped nanotubes are formed at a particular voltage sequence. Based on the ‘oxygen bubble model’ and the ionic current and electronic current theories, the formation process of nanotubes of two-step anodization is explained clearly.

Graphical abstract: Debunking the essential effect of temperature and voltage on the current curve and the nanotube morphology

Article information

Article type
Paper
Submitted
06 Sep 2021
Accepted
23 Nov 2021
First published
22 Dec 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 429-436

Debunking the essential effect of temperature and voltage on the current curve and the nanotube morphology

T. Gong, J. Chen, P. Fang, L. Liu, C. Li, A. Han and Y. Song, RSC Adv., 2022, 12, 429 DOI: 10.1039/D1RA06694C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements