Issue 5, 2022, Issue in Progress

Synthesis and cationic polymerization of halogen bonding vinyl ether monomers

Abstract

Halogen bonding is rapidly becoming recognized as a viable and useful intermolecular interaction in supramolecular chemistry. While various monomers amenable to radical polymerization methods containing halogen bonding donors have been developed, this study aims to expand the type of monomers that incorporate this intermolecular interaction to facilitate use of cationic polymerization by developing three novel vinyl ether monomers containing halogen bonding donor moieties: 2,3,5,6-tetrafluoro-4-iodophenoxyethyl vinyl ether (C2I), 2,3,5,6-tetrafluoro-4-iodophenoxybutyl vinyl ether (C4I), and 2-(2,3,5,6-tetrafluoro-4-iodophenoxyethoxy)ethyl vinyl ether (O3I). Well controlled cationic polymerization is achievable through the use of a proton trap, 2,6-di-tert-butylpyridine. The use of SnCl4 as a co-Lewis acid was found to accelerate the reaction. Between the three monomers, the difference in the chain length is shown to influence the reaction rate, with the longest chain demonstrating the fastest polymerization. Initial studies of the halogen bonding ability shows that halogen bonding exists for all three monomers but is most pronounced in C4I. The polymerized vinyl ethers also exhibit halogen bonding. Due to the ease of synthesis and polymerization, these are promising new monomers to increase functionality available for polymers synthesized using cationic polymerization.

Graphical abstract: Synthesis and cationic polymerization of halogen bonding vinyl ether monomers

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2021
Accepted
12 Jan 2022
First published
20 Jan 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 2641-2651

Synthesis and cationic polymerization of halogen bonding vinyl ether monomers

Y. Morota, T. Suzuki and K. B. Landenberger, RSC Adv., 2022, 12, 2641 DOI: 10.1039/D1RA06957H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements