Issue 1, 2022

Preparation and thermal cross-linking mechanism of co-polyester fiber with flame retardancy and anti-dripping by in situ polymerization

Abstract

Extensive research has been conducted on polyester flame retardants and anti-droplet modifications in recent years. The conventional methods used to improve the effectiveness of the anti-droplet modifications usually involve improving the melt fluidity and the combustion char formation through reactive cross-linking. However, these methods, while reducing the droplets, may produce more smoke. This study proposes a combustion cross-linking method which avoids the droplet and flame retardancy synergistic modification problem. Based on the flame retardancy of polyester, anti-droplet properties were realized using a collaborative cross – linking structure formed by a phosphorus – containing flame – retardant group and acid silicon solvent to achieve a flame retardant and anti-droplets result. The results show that the phosphorus–silicon copolyester presents an enhancement effect for flame retardancy, confirmed by obvious reductions in the peak value of heat release rate (78.4%) and total heat release (44.2%). Meanwhile, the total smoke release and smoke product rate of phosphorus–silicon copolyester are decreased by 45.1% and 41.5%, respectively. And the phosphorus–silicon copolyester has a high LOI value of 34.8 ± 0.1% and UL-94 is V-0 rating with superior anti-dripping performance. Flame retardancy index (FRI) of the copolyesters containing phosphorus–silica are up to 4.3093 (good flame retardancy). Nonisothermal differential scanning calorimetry (DSC) was performed for qualitative analysis of network formation by the aid of Cure Index (CI) dimensionless criterion. It was observed that the acidic silica led to Excellent cure situation. The TG-DSC, XPS, and FTIR results validate the thermal cross-linking ability of the copolymer due to the synergistic cross-linking effect between the self-cross-linking characteristic of the catalysed acidic silica sol containing the phosphorus flame retardant. The SEM-EDX and Raman results further verify the effectiveness of the condensed-phase flame-retardant mechanism. Phosphorus–silicon copolyester has good spinnability, flame retardancy and anti-droplets properties. Which provides a simple method for preparing polyester by using this combustion synergistic crosslinking effect to achieve flame retardant and anti-dripping modification of copolymers.

Graphical abstract: Preparation and thermal cross-linking mechanism of co-polyester fiber with flame retardancy and anti-dripping by in situ polymerization

Supplementary files

Article information

Article type
Paper
Submitted
06 Oct 2021
Accepted
10 Dec 2021
First published
20 Dec 2021
This article is Open Access
Creative Commons BY license

RSC Adv., 2022,12, 168-180

Preparation and thermal cross-linking mechanism of co-polyester fiber with flame retardancy and anti-dripping by in situ polymerization

K. Zhu, Z. Jiang, X. Xu, Y. Zhang, M. Zhu, J. Wang and A. Ren, RSC Adv., 2022, 12, 168 DOI: 10.1039/D1RA07410E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements