Issue 9, 2022, Issue in Progress

Atomic-level investigation on the oxidation efficiency and corrosion resistance of lithium enhanced by the addition of two dimensional materials

Abstract

Understanding the oxidation and corrosion characteristics of Lithium (Li)-based systems is critical to their successful use as a solid fuel in spacecraft, powerplants, rechargeable batteries, submarines, and many other aquatic and corrosive environments. This study offers a systematic roadmap for engineering the oxidation efficiency and corrosion resistance of Li-based systems using ReaxFF-based Reactive Molecular Dynamics (RMD) simulations for the first time. First, we explored the oxidation mechanism of bare Li (Li/O2) at 1200 K, noticing that the oxidation process quickly ceases due to the creation of a passive oxide film on the Li surface. Afterward, we examined the effect of introducing graphene-oxide (GO) to the oxidation process of Li/O2. Interestingly, the inclusion of GO establishes a new reaction pathway between Li and O2, thus significantly improving oxidation efficiency. Additionally, we realized that when the concentration of GO increases in the system, the oxidation rate of Li/O2 increases considerably. As exposed to O2 and H2O, bare Li is observed to be highly corrosion-prone, while graphene (Gr)-coated Li exhibits excellent corrosion resistance, suggesting that Gr might be used as a promising corrosion-protective shield. Overall, this study is intended to serve as a reference for experimental investigations and assist researchers and engineers in designing more efficient Li-based functional systems.

Graphical abstract: Atomic-level investigation on the oxidation efficiency and corrosion resistance of lithium enhanced by the addition of two dimensional materials

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2021
Accepted
08 Feb 2022
First published
15 Feb 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 5458-5465

Atomic-level investigation on the oxidation efficiency and corrosion resistance of lithium enhanced by the addition of two dimensional materials

Md. H. Rahman, E. H. Chowdhury and S. Hong, RSC Adv., 2022, 12, 5458 DOI: 10.1039/D1RA07659K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements