Microwave-assisted catalytic conversion of chitin to 5-hydroxymethylfurfural using polyoxometalate as catalyst
Abstract
The key challenges for converting chitin to 5-hydroxymethylfurfural (5-HMF) include the low 5-HMF yield. Moreover, the disadvantages of traditional acid–base catalysts including complex post-treatment processes, the production of by-products, and severe equipment corrosion also largely limit the large-scale conversion of chitin to 5-HMF. In this view, herein we have demonstrated a microwave aided efficient and green conversion of chitin to 5-HMF while using polyoxometalate (POM) as a catalyst and DMSO/water as solvent. Chitin treated with H2SO4 followed by ball-milling (chitin-H2SO4-BM) was selected as the starting compound for the conversion process. Four different POMs including H3[PW12O40], H3[PMo12O40], H4[SiW12O40] and H4[SiMo12O40] were used as catalysts. Various reaction parameters including reaction temperature, amount of catalyst, mass ratios of water/DMSO and reaction time have been investigated to optimize the 5-HMF conversion. The H4[SiW12O40] catalyst exhibited the highest catalytic performance with 23.1% HMF yield at optimum operating conditions which is the highest among the literature for converting chitin to 5-HMF. Significantly, the disadvantages of the state of the art conversion routes described earlier can be overcome using POM-based catalysts, which makes the process more attractive to meet the ever-increasing energy demands, in addition to helping consume crustacean waste.