Issue 21, 2022, Issue in Progress

A novel method of preparing vanadium-based precursors and their enhancement mechanism in vanadium nitride preparation

Abstract

Vanadium nitride is widely used because of its excellent properties. The existing production methods are affected by the problems of complex preparation for the vanadium source, high temperature, and low N content. In this work, a wide range of vanadium solutions were used as the vanadium source to prepare vanadium nitride with high N content. In this work, a novel precursor was prepared by a microwave-assisted precipitation process, and then the vanadium nitride was prepared by reduction and nitridation precursor at 1150 °C. The results show that in the microwave-assisted method, the particle size and structure of the precursor can be adjusted, so that the contact area of the precursor with N2 during the nitridation process becomes larger, the N2 diffusion path becomes shorter, and the formation of vanadium nitride is enhanced. The prepared product has a nitrogen content of 17.67 wt% and is composed of uniform spherical particles. The content of other chemical components and density can achieve the standard requirements specified in VN16. Meanwhile, the thermodynamic analysis showed that the NH3 generated by the thermal decomposition of the precursor can be used directly as a reducing gas to reduce V2O5, and reduced the emission of polluting gases. It is a feasible method to prepare vanadium nitride by reduction and nitridation.

Graphical abstract: A novel method of preparing vanadium-based precursors and their enhancement mechanism in vanadium nitride preparation

Article information

Article type
Paper
Submitted
27 Jan 2022
Accepted
23 Apr 2022
First published
29 Apr 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 13093-13102

A novel method of preparing vanadium-based precursors and their enhancement mechanism in vanadium nitride preparation

A. Wen, Z. Cai, Y. Zhang and H. Liu, RSC Adv., 2022, 12, 13093 DOI: 10.1039/D2RA00584K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements