Synthesis, gene silencing activity, thermal stability, and serum stability of siRNA containing four (S)-5′-C-aminopropyl-2′-O-methylnucleosides (A, adenosine; U, uridine; G, guanosine; and C, cytidine)†
Abstract
Herein, we report the synthesis of (S)-5′-C-aminopropyl-2′-O-methyladenosine and (S)-5′-C-aminopropyl-2′-O-methylguanosine phosphoramidites and the properties of small interfering RNAs (siRNAs) containing four (S)-5′-C-aminopropyl-2′-O-methylnucleosides (A, adenosine; U, uridine; G, guanosine; and C, cytidine). The siRNAs containing (S)-5′-C-aminopropyl-nucleosides at the 3′- and 5′-regions of the passenger strand were well tolerated for RNA interference (RNAi) activity. Conversely, the (S)-5′-C-aminopropyl modification in the central region of the passenger strand decreased the RNAi activity. Furthermore, the siRNAs containing three or four consecutive (S)-5′-C-aminopropyl-2′-O-methylnucleosides at the 3′- and 5′-regions of the passenger strand exhibited RNAi activity similar to that of the corresponding 2′-O-methyl-modified siRNAs. Finally, it was observed that (S)-5′-C-aminopropyl modifications effectively improved the serum stability of the siRNAs, compared with 2′-O-methyl modifications. Therefore, (S)-5′-C-aminopropyl-2′-O-methylnucleosides would be useful for improving the serum stability of therapeutic siRNA molecules without affecting their RNAi activities.