Issue 22, 2022, Issue in Progress

Excellent physicochemical and sensing characteristics of a RexOy based pH sensor at low post-deposition annealing temperature

Abstract

pH monitoring in clinical assessment is pivotal as pH imbalance significantly influences the physiological and extracellular functions of the human body. Metal oxide based pH sensors, a promising alternative to bulky pH electrodes, mostly require complex fabrication, high-temperature post-deposition treatment, and high expenses that inhibit their practical applicability. So, there is still room to develop a straightforward and cost-effective metal oxide based pH sensor comprising high sensitivity and reliability. In this report, a novel solution-processed and low-temperature annealed (220 °C) mixed-valence (VII/VI) oxide of rhenium (RexOy) was applied in an electrolyte–insulator–semiconductor (EIS) structure. The annealing effect on morphological, structural, and compositional properties was scrutinized by physical and chemical characterizations. The post-annealed RexOy exhibited a high pH sensitivity (57.3 mV pH−1, R2 = 0.99), a lower hysteresis (4.7 mV), and a reduced drift rate (1.7 mV h−1) compared to the as-prepared sample for an analytically acceptable pH range (2–12) along with good stability and reproducibility. The magnified sensing performance originated due to the valence state of Re from Re6+ to Re7+ attributed to each electron transfer for a single H+ ion. The device showed high selectivity for H+ ions, which was confirmed by the interference study with other relevant ions. The feasibility of the sensor was verified by measuring the device in real samples. Hence, the ease-of-fabrication and notable sensing performance of the proposed sensor endorsed its implementation for diagnosing pH-related diseases.

Graphical abstract: Excellent physicochemical and sensing characteristics of a RexOy based pH sensor at low post-deposition annealing temperature

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2022
Accepted
16 Apr 2022
First published
06 May 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 13774-13782

Excellent physicochemical and sensing characteristics of a RexOy based pH sensor at low post-deposition annealing temperature

M. Das, T. Chakraborty, K. F. Lei, C. Y. Lin and C. H. Kao, RSC Adv., 2022, 12, 13774 DOI: 10.1039/D2RA01177H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements