Issue 20, 2022, Issue in Progress

Facile preparation of flexible binder-free graphene electrodes for high-performance supercapacitors

Abstract

A facile two-step strategy to prepare flexible graphene electrodes has been developed for supercapacitors using thermal reduction of graphene oxide (GO) and thermally reduced graphene oxide (TRGO) composite films. The tunable porous structure of the GO/TRGO film provided channels to release the high pressure generated by CO2 gas. The graphene electrode obtained from reduced-GO/TRGO (1 : 1 in mass ratio) film showed great flexibility and high film density (0.52 g cm−3). Using the EMI-BF4 electrolyte with a working voltage of 3.7 V, the as-fabricated free-standing reduced-GO/TRGO (1 : 1) film achieved a great gravimetric capacitance of 180 F g−1 (delivering a gravimetric energy density of 85.6 W h kg−1), a volumetric capacitance of 94 F cm−3 (delivering a volumetric energy density of 44.7 W h L−1), and a 92% retention after 10 000 charge/discharge cycles. In addition, the solid state flexible supercapacitor with the free-standing reduced-GO/TRGO (1 : 1) film as the electrodes and the EMI-BF4/poly (vinylidene fluoride hexafluopropylene) (PVDF-HFP) gel as the electrolyte also demonstrated a high gravimetric capacitance of 146 F g−1 with excellent mechanical flexibility, bending stability, and electrochemical stability. The strategy developed in this study provides great potentials for the synthesis of flexible graphene electrodes for supercapacitors.

Graphical abstract: Facile preparation of flexible binder-free graphene electrodes for high-performance supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2022
Accepted
14 Apr 2022
First published
26 Apr 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 12590-12599

Facile preparation of flexible binder-free graphene electrodes for high-performance supercapacitors

S. Lin, J. Tang, W. Zhang, K. Zhang, Y. Chen, R. Gao, H. Yin, X. Yu and L. Qin, RSC Adv., 2022, 12, 12590 DOI: 10.1039/D2RA01658C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements