Issue 32, 2022

Comparison of pharmaceutical removal in two membrane bioreactors with/without powdered activated carbon addition

Abstract

The present study investigates the removal of six selected pharmaceuticals from municipal wastewater in two membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition. Two approaches were carried out for obtaining different carbon dosages related to the influent: (1) with a fixed solids retention time (SRT) and varying PAC concentrations; (2) with varying SRTs and a fixed PAC concentration. The results reveal that a PAC dosage related to influent of 21 mg Lāˆ’1 and SRT of 20 d are optimal. The first approach achieved a better removal performance than the second. The removal of amidotrizoic acid (up to 46%), bezafibrate (>92%) and iopromide (around 85%) were mainly caused by biological process, but were also enhanced by PAC addition. Efficient removal (>95%) of sulfamethoxazole, carbamazepine and diclofenac were highly dependent on the PAC dosage. However, carbamazepine shows re-metabolization properties during biological processing. Decreasing the SRT as done in the second approach, not only increased the PAC amount, but also decreased the mass of activated sludge and reduced the capability to degrade complex organic matter. Consequently, biodegradability and adsorbability played decisive roles in the removal of each compound.

Graphical abstract: Comparison of pharmaceutical removal in two membrane bioreactors with/without powdered activated carbon addition

Article information

Article type
Paper
Submitted
15 Mar 2022
Accepted
04 Jul 2022
First published
21 Jul 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 20958-20967

Comparison of pharmaceutical removal in two membrane bioreactors with/without powdered activated carbon addition

Y. Liu, Q. Xia, W. Huang, X. Yi, L. Dong and F. Yang, RSC Adv., 2022, 12, 20958 DOI: 10.1039/D2RA01686A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements