Issue 23, 2022

Linear unit BN2: a novel birefringence-enhanced fundamental module with sp orbital hybridization

Abstract

Inorganic planar π-conjugated groups are advantageous to generate large birefringence in optical functional materials, and many excellent materials contain CO3, BO3 or B3O6, such as CaCO3, α/β-BaB2O4 (α/β-BBO), and KBe2BO3F2 (KBBF). In view of their microscopic structures, the common characteristics are the planar structures, which are regarded as birefringence-enhanced fundamental modules (FMs). Nowadays, exploring novel birefringence-enhanced FMs is becoming a burning issue. Herein, we investigated the birefringence-enhanced FMs in B–N systems and found that the BN2 linear unit could produce great birefringence. Through the investigation based on the Inorganic Crystal Structure Database, some compounds with the BN2 linear group were screened out with the formulas A3BN2 (A = Li, Na), A3BN3 (A = Mg, Ca), and Ba3(BN2)2. Particularly, Ca3(BN2)N exhibits a great birefringence of about 0.411 at 1064 nm, which is 3.5, 2.5 and 2.0 times those of the most commercially used birefringent crystals α-BaB2O4n = 0.116 at 1064 nm), CaCO3n = 0.164 at 1064 nm) and YVO4n = 0.208 at 1064 nm), respectively. To find the origins of the optical properties of compounds with the BN2 linear group, the first-principles, REDA and polarizability anisotropy analysis methods were used. Owing to the structural arrangement and the polarization anisotropy of the BN2 linear group, it can influence the birefringence significantly. This work will provide a general way for exploring birefringence-enhanced FMs in B–N compounds.

Graphical abstract: Linear unit BN2: a novel birefringence-enhanced fundamental module with sp orbital hybridization

Article information

Article type
Paper
Submitted
02 Apr 2022
Accepted
02 May 2022
First published
16 May 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 14757-14764

Linear unit BN2: a novel birefringence-enhanced fundamental module with sp orbital hybridization

J. Chen, M. Wu, J. Zhang and X. Huang, RSC Adv., 2022, 12, 14757 DOI: 10.1039/D2RA02135H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements