Recycling and applications of ammonium polyphosphate/polycarbonate/acrylonitrile butadiene styrene by laser-scribing technologies for supercapacitor electrode materials
Abstract
Fabricating a simple and valid high-property graphene-based supercapacitor employing engineered plastic waste as the original material has attracted tremendous interest. Herein we report an extendable method for producing nitrogen and phosphorus dual-doped porous three-dimensional (3D) graphene materials from the blends of ammonium polyphosphate (APP) and polycarbonate (PC)/acrylonitrile ((A), butadiene (B), and styrene (S)) (ABS) using a simple laser direct-writing technique. In APP/PC/ABS blends, APP/PC/ABS, a waste by-product generated in car interiors and exterior decoration and electronic device shells and other fields, served as a sufficient and economic carbon source, while APP was employed as a nitrogen and phosphorus source as well as flame retardant. APP/PC/ABS blends could be transformed into nitrogen and phosphorus dual-doped laser-induced graphene (NPLIG) via scribing under a CO2 laser in air conditions. In addition, a supercapacitor was fabricated applying NPLIG as the electrode material, and KOH solution as the electrolyte. The as-fabricated NPLIG supercapacitor exhibited excellent electrochemical behaviours, namely, a high specific areal capacitance (239 F gā1) at a current density of 0.05 A gā1, which outperformed many LIG-based and GO-based supercapacitors. The concept of designing supercapacitors that can be obtained with a facile laser-scribing technology can stimulate both the building of supercapacitors and preparation of graphene, and the sustainable utilization of engineering plastics.