Determination of furfurals in baby food samples after extraction by a novel functionalized magnetic porous carbon†
Abstract
Herein, a novel polypyrrole-polyaniline functionalized magnetic porous carbon (MPC@PPy-PANI) composite material was fabricated and utilized for the separation/extraction of furfurals from baby food and dry milk samples. In this way, magnetite@silica nanoparticles were first synthesized, and then a magnetic metal–organic framework (MMIL-101(Fe)) was prepared. After that, the MMIL-101(Fe) was pyrolyzed in a neutral atmosphere to obtain MPC. Ultimately, the MPC was functionalized with a co-polymer of aniline–pyrrole via oxidation polymerization. The synthesis of MPC@PPy-PANI was confirmed with FT-IR spectroscopy, SEM, TEM, VSM, and XRD techniques. Furfural and hydroxymethyl furfural were selected as the model analytes, which were separated/quantified on an HPLC-UV instrument. The LODs, LOQs, and linear dynamic ranges (LDRs) were in the range of 0.3–0.7 μg kg−1, 1.0–2.5 μg kg−1, and 1.0–600 μg kg−1, respectively. Repeatability of the method was studied as an RSD parameter, and was located in the range of 5.5–6.8% (within-day, n = 5) and 8.2–9.4% (between-day, n = 3 days). The applicability of the proposed method was established by analyzing several baby food and dry milk samples. The relative recovery (RR%) and repeatability were located in the range of 86–111% and 3.3–10.1%, respectively, showing excellent accuracy and precision of the method.