Issue 30, 2022

Functions and performance of ionic liquids in enhancing electrocatalytic hydrogen evolution reactions: a comprehensive review

Abstract

As a green and renewable energy source, hydrogen can be produced by the electrolysis of water via the hydrogen evolution reaction (HER). Nevertheless, this method requires efficient and low-cost electro-catalysts to improve hydrogen production efficiency. Ionic liquids (ILs), with a unique combination of such superior properties as low vapor pressure, high electrical conductivity, high electrochemical stability, and a wide variety of functional groups, have found applications in electrochemical systems designed for efficient HER. Herein, we provide a comprehensive and updated review on the functions and performance of ILs used in electrochemical systems to enhance the HER. As the name suggests, ILs have been employed either as electrolytes by themselves, or as electrolyte additives. They also played many functional roles in the synthesis of HER electrocatalysts, including as the synthesis reaction solvent, reaction precursor as well as single/dual ion sources, binder and structure-directing agents of the catalysts. With the assistance of ILs, HER efficiency of electrocatalysts was improved significantly, resulting in decreased overpotentials in the range of 16–385 mV @ 10 mA cm−2 and increased Tafel slopes in the range of 30–210 mV dec−1. Lastly, the problems and challenges of ILs in electrocatalytic water electrolysis and HER are also discussed and their prospects considered.

Graphical abstract: Functions and performance of ionic liquids in enhancing electrocatalytic hydrogen evolution reactions: a comprehensive review

Article information

Article type
Review Article
Submitted
21 Apr 2022
Accepted
30 Jun 2022
First published
06 Jul 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 19452-19469

Functions and performance of ionic liquids in enhancing electrocatalytic hydrogen evolution reactions: a comprehensive review

K. Chen, B. Xu, L. Shen, D. Shen, M. Li and L. Guo, RSC Adv., 2022, 12, 19452 DOI: 10.1039/D2RA02547G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements