Issue 27, 2022, Issue in Progress

Phase change composites of octadecane and gallium with expanded graphite as a carrier

Abstract

Phase change materials (PCMs) have attracted more and more attention in the field of energy and thermal management due to the characteristic of exchanging heat with small temperature change. In order to obtain perfect PCMs, previous researchers usually prepared various phase change composites (PCCs), but there is still a gap toward the goal. Perhaps the development of PCMs with adjustable properties in a wide range to meet different needs is a feasible option. Given that the properties of organic PCMs and metal PCMs are highly complementary, using expanded graphite (EG) as a mediator, a stable PCC of octadecane and gallium that are difficult to directly mix, was successfully prepared. Octadecane and gallium are stored in the microstructures of EG, and the microstructures of EG play the role of storing nucleation embryos, and the suppression of supercooling can reach more than 86.82%. The test results showed that the properties of the PCC are indeed a balance between octadecane and gallium, and can be adjusted in a wide range. The PCC also has good structural and chemical stability, which can effectively avoid the corrosion risk caused by gallium leakage. The PCC samples containing equal amounts of gallium and paraffin were selected for thermal management performance tests. The results indicated that the PCC has application potential in related fields, and can provide a reference for the development of other PCCs.

Graphical abstract: Phase change composites of octadecane and gallium with expanded graphite as a carrier

Article information

Article type
Paper
Submitted
29 Apr 2022
Accepted
28 May 2022
First published
10 Jun 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 17217-17227

Phase change composites of octadecane and gallium with expanded graphite as a carrier

Y. Yao, Y. Cui and Z. Deng, RSC Adv., 2022, 12, 17217 DOI: 10.1039/D2RA02734H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements