Issue 30, 2022, Issue in Progress

Preparation and defect structure analysis of near-stoichiometric lithium tantalate wafers

Abstract

A vapour transfer equilibrium (VTE) method has been used to prepare near-stoichiometric lithium tantalate (NSLT) crystals with different Li contents. The NSLT crystals were tested and analyzed by differential thermal analysis (DTA) and X-ray photoelectron spectroscopy (XPS) to investigate the effect of Li content on the Curie temperature and internal defects of NSLT crystals. This study found that when the Li content increased in the NSLT wafer, the binding energy corresponding to the peak of the Ta4f electron layer in the XPS spectrum first decreased and then increased, indicating that the proportion of Ta valence states was different in wafers with different Li contents. From XPS energy spectrum analysis, it can be seen that the lithium tantalate crystal contains Ta5+, Ta4+, Ta3+ and lower-valence Ta. As the Li content increases in the NSLT wafer, Ta4+ disappears and the proportion of Ta5+ decreases initially, follows by a later increase and then subsequent further decrease. However, the change in proportion of Ta3+ and lower-price Ta is completely opposite to that of Ta5+, showing a trend of first rising, then falling and then finally rising again. Moreover, when the Li content is 49.751% in the NSLT wafer, the proportion of Ta5+ reaches a maximum, showing that at this Li concentration the NSLT crystal has a more perfect lattice structure. In this study, we propose a mixed defect model in which polarons coexist with Li vacancies and Ta inversion, explaining the change in Ta valence state in lithium tantalate crystals. This model is more in line with the observed results in this work. The new hybrid defect model and the variation law of Ta valence state with Li concentration proposed in this paper provide a new direction and experimental proof for the defect study of NSLT crystals, and also provide a theoretical basis to explore the Li content at the best physical properties of NSLT crystals.

Graphical abstract: Preparation and defect structure analysis of near-stoichiometric lithium tantalate wafers

Article information

Article type
Paper
Submitted
02 May 2022
Accepted
23 Jun 2022
First published
30 Jun 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 19091-19100

Preparation and defect structure analysis of near-stoichiometric lithium tantalate wafers

X. Xiao, Q. Xu, S. Liang, H. Zhang, L. Ma, L. Hai and X. Zhang, RSC Adv., 2022, 12, 19091 DOI: 10.1039/D2RA02775E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements