Issue 34, 2022

ZnO–ZnCr2O4 composite prepared by a glycine nitrate process method and applied for hydrogen production by steam reforming of methanol

Abstract

To address climate change, the energy crisis, and global warming, hydrogen (H2) can be used as a potential energy carrier because it is clean, non-toxic and efficient. Today, the mainstream industrial method of H2 generation is steam reforming of methanol (SRM). In this process, a zinc-based commercial catalyst is usually used. In this work, a ZnO–ZnCr2O4 catalyst was successfully synthesised by the glycine nitrate process (GNP) and developed for use in H2 production by SRM. The specific surface area, porous structure and reaction sites of the zinc-based catalyst were effectively increased by the preparation method. The as-combusted ZnO–ZnCr2O4 composite catalyst had a highly porous structure due to the gas released during the GNP reaction process. Moreover, according to the ZnO distribution and different G/N ratios, the specific surface area (SBET) of the as-combusted ZnO–ZnCr2O4 catalyst varied from 29 m2 g−1 to 46 m2 g−1. The ZnO–ZnCr2O4 composite catalyst (G/N 1.7) exhibited the highest hydrogen production, 4814 ml STP min−1 g-cat−1, at a reaction temperature of 450 °C without activation treatment. After activation, the ZnO–ZnCr2O4 composite catalyst achieved hydrogen production of 6299 ml STP min−1 g-cat−1 at a reaction temperature of 500 °C. The hydrogen production performance of the ZnO–ZnCr2O4 composite powder was improved by the uniform addition of ZnO to ZnCr2O4. Based on the performance, this ZnO–ZnCr2O4 composite catalyst has great potential to have industrial and economic impact due to its high efficiency in hydrogen production.

Graphical abstract: ZnO–ZnCr2O4 composite prepared by a glycine nitrate process method and applied for hydrogen production by steam reforming of methanol

Article information

Article type
Paper
Submitted
31 May 2022
Accepted
01 Aug 2022
First published
10 Aug 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 22097-22107

ZnO–ZnCr2O4 composite prepared by a glycine nitrate process method and applied for hydrogen production by steam reforming of methanol

C. Yu, S. Sakthinathan, G. Lai, C. Lin, T. Chiu and M. Liu, RSC Adv., 2022, 12, 22097 DOI: 10.1039/D2RA03383F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements