Issue 35, 2022, Issue in Progress

Functional utilization of biochar derived from Tenebrio molitor feces for CO2 capture and supercapacitor applications

Abstract

Biochar has attracted great interest in both CO2 capture and supercapacitor applications due to its unique physicochemical properties and low cost. Fabrication of eco-friendly and cost-effective biochar from high potential biomass Tenebrio molitor feces can not only realize the functional application of waste, but also a potential way of future carbon capture and energy storage technology. In this study, a novel KOH activation waste-fed Tenebrio molitor feces biochar (TMFB) was developed and investigated in terms of CO2 capture and electrochemical performance. When activated at 700 °C for 1 h, the specific surface area of the feces biochar (TMFB-700A) increased significantly from 232.1 to 2081.8 m2 g−1. In addition, well-developed pore distribution facilitates CO2 capture and electrolyte diffusion. TMFB-700A can quickly adsorb a large amount of CO2 (3.05 mol kg−1) with excellent recycling performance. TMFB-700A also exhibited promising electrochemical performance (335.8 F g−1 at 0.5 A g−1) and was used as electrode material in a symmetrical supercapacitor. It provided a high energy density of 33.97 W h kg−1 at a power density of 0.25 kW kg−1 with 90.47% capacitance retention after 10 000 charge–discharge cycles. All the results demonstrated that TMFB could be a potential bifunctional material and provided valuable new insights for Tenebrio molitor feces high-value utilization.

Graphical abstract: Functional utilization of biochar derived from Tenebrio molitor feces for CO2 capture and supercapacitor applications

Supplementary files

Article information

Article type
Paper
Submitted
09 Jun 2022
Accepted
08 Aug 2022
First published
15 Aug 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 22760-22769

Functional utilization of biochar derived from Tenebrio molitor feces for CO2 capture and supercapacitor applications

S. Wang, Y. Shi, H. Xiang, R. Liu, L. Su, L. Zhang and R. Ji, RSC Adv., 2022, 12, 22760 DOI: 10.1039/D2RA03575H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements