Issue 31, 2022

Effective regulation of the electronic properties of a biphenylene network by hydrogenation and halogenation

Abstract

A biphenylene network, the first synthesized non-graphene planar carbon allotrope composed entirely of sp2-hybridized carbon atoms, has attracted widespread interest due to its unique structure, and electronic and mechanical properties. A pristine biphenylene network is metallic, and the effective regulation of its electronic properties will greatly expand its application in the fields of optoelectronics, nanoelectronic devices and photocatalysis. In this paper, the hydrogenation and halogenation of biphenylene networks were investigated using density functional theory, and their electronic properties were tuned by varying the functionalization concentration. Calculation results show that the maximum functionalization degree is CH1.00, CF1.00, CCl0.67 and CBr0.33, respectively. The band gap could be modulated in the range of 0.00–4.86 eV by hydrogenation, 0.012–4.82 eV by fluorination, 0.090–3.44 eV by chlorination, and 0.017–1.73 eV by bromination. It is also found that CHx (x = 0.92, 1.00), CFx (x = 0.75, 1.00), and CClx (x = 0.42–0.67) have the potential to photolyse water. Our research indicates that hydrogenation and halogenation can effectively regulate the electronic properties of the biphenylene network by controlling the concentration of functionalization, thus expanding its potential applications in the field of electronic devices and photocatalysis.

Graphical abstract: Effective regulation of the electronic properties of a biphenylene network by hydrogenation and halogenation

Supplementary files

Article information

Article type
Paper
Submitted
14 Jun 2022
Accepted
04 Jul 2022
First published
11 Jul 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 20088-20095

Effective regulation of the electronic properties of a biphenylene network by hydrogenation and halogenation

Y. Xie, L. Chen, J. Xu and W. Liu, RSC Adv., 2022, 12, 20088 DOI: 10.1039/D2RA03673H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements