Magnetoelectric interaction in molecular multiferroic nanocomposites†
Abstract
Incorporation of magnetic and electric orders in a form of multiferroics is an interesting topic in materials science. Making a molecular heterogeneous composite by incorporating the molecular magnet vanadium–chromium Prussian blue analogue (V–Cr PBA) and a molecular ferroelectric imidazolium chloride C3N2H5-ClO4 (ImClO4) provides a pathway towards achieving the room temperature magnetoelectric effect. The change of magnetization of about 6% is shown as a result of applying an electric field (21 kV cm−1) to the composite made of the aforementioned molecular crystals at room temperature. In the ferromagnetic resonance measurement (FMR) under the effect of an applied electric field, a shift of the resonance magnetic field is also observed in the nanocomposites. This work provides a pathway towards molecular multiferroic nanocomposites with magnetoelectric coupling interactions at room temperature.