Issue 41, 2022, Issue in Progress

Large-scale synthesis of Notum inhibitor 1-(2,4-dichloro-3-(trifluoromethyl)-phenyl)-1H-1,2,3-triazole (ARUK3001185) employing a modified Sakai reaction as the key step

Abstract

1-Phenyl-1H-1,2,3-triazole 1 (ARUK3001185) was prepared on large scale from aniline 4 by application of both (1) a copper catalyzed azide–alkyne cycloaddition (CuAAC) with (trimethylsilyl)acetylene, and (2) a Clark modification of the Sakai reaction. The one-pot Sakai–Clark method with (MeO)2CHCH[double bond, length as m-dash]NNHTos (2b) proved to be superior as it was operationally simple, metal-free, and avoided the use of aryl azide 7. The Sakai–Clark method has been reliably performed on large scale to produce >100 g of 1 in good efficiency and high purity.

Graphical abstract: Large-scale synthesis of Notum inhibitor 1-(2,4-dichloro-3-(trifluoromethyl)-phenyl)-1H-1,2,3-triazole (ARUK3001185) employing a modified Sakai reaction as the key step

Supplementary files

Article information

Article type
Paper
Submitted
16 Aug 2022
Accepted
08 Sep 2022
First published
16 Sep 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 26497-26503

Large-scale synthesis of Notum inhibitor 1-(2,4-dichloro-3-(trifluoromethyl)-phenyl)-1H-1,2,3-triazole (ARUK3001185) employing a modified Sakai reaction as the key step

B. N. Atkinson, N. J. Willis, J. Smith, R. Gill, J. Ali, Z. Xu, P. Lai and P. V. Fish, RSC Adv., 2022, 12, 26497 DOI: 10.1039/D2RA05132J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements