Issue 50, 2022, Issue in Progress

Enhancement of CO gas sensing performance by Mn-doped porous ZnSnO3 microspheres

Abstract

This work reports the synthesis of Mn-doped ZnSnO3 microspheres (Zn1−xMnxSnO3) using a simple co-precipitation method with (x = 0 to 0.15) and characterized for structural, morphological, surface area, and sensing properties. X-ray diffraction (XRD) analysis revealed the face-centered cubic structure of Mn-doped ZnSnO3 samples. Brunauer–Emmett–Teller (BET) analysis demonstrated the variation in surface area from 15.229 m2 g−1 to 42.999 m2 g−1 with x = 0 to 0.15 in Zn1−xMnxSnO3. XPS indicates the change in the defect levels by Mn doping, which plays a crucial role in chemical sensors. Indeed a significant increase (≈311.37%) in CO gas sensing response was observed in the x = 0.10 sample compared to pure ZnSnO3 with a simultaneous reduction in operating temperature from 250 to 200 °C. Moreover, remarkable enhancements in response/recovery times (≈6.6/34.1 s) were obtained in the x = 0.10 sample. The Mn-doped ZnSnO3 could be a promising candidate for CO gas sensing devices used for maintaining air quality.

Graphical abstract: Enhancement of CO gas sensing performance by Mn-doped porous ZnSnO3 microspheres

Supplementary files

Article information

Article type
Paper
Submitted
27 Oct 2022
Accepted
27 Oct 2022
First published
10 Nov 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 32249-32261

Enhancement of CO gas sensing performance by Mn-doped porous ZnSnO3 microspheres

M. K. Tiwari, S. C. Yadav, A. Srivastava, A. Kanwade, J. A. K. Satrughna, S. S. Mali, J. V. Patil, C. K. Hong and P. M. Shirage, RSC Adv., 2022, 12, 32249 DOI: 10.1039/D2RA06785D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements