Designing red-fluorescent superparamagnetic nanoparticles by conjugation with gold clusters
Abstract
Photoluminescent (PL) metal and metal oxide nanoclusters (NCs), with a size of just several nanometers, are a separate class of nanomaterials abundant with new attractive optical, physical, and chemical properties and biocompatibility. However, the synthesis of PL magnetic NCs via attachment of PL NCs to iron oxide-based nanoparticles (NPs) is still problematic. Motivated by this, herein, we report the development of a microwave-driven conjugation approach of red-fluorescent gold nanoclusters (BSA@AuNCs) to superparamagnetic NPs. Synthesized CoFe2O4@AuNCs possess strong photoluminescence in water and ethanol media as well as good colloidal and optical stability, and magnetization response. High-resolution transmission electron microscopy (HRTEM), steady-state and time-resolved photoluminescence spectroscopy, X-ray powder diffraction (XRD), and magnetic measurements from ambient to cryogenic temperatures were applied for structural characterization and evaluation of optical and magnetic properties of the synthesized species.