Issue 11, 2022

Effect of pore diameter and length on electrochemical CO2 reduction reaction at nanoporous gold catalysts

Abstract

In this work, we employ differential electrochemical mass spectrometry (DEMS) to track the real-time evolution of CO at nanoporous gold (NpAu) catalysts with varying pore parameters (diameter and length) during the electrochemical CO2 reduction reaction (CO2RR). We show that due to the increase in the local pH with increasing catalyst roughness, NpAu catalysts suppress the bicarbonate-mediated hydrogen evolution reaction (HER) compared to a flat Au electrode. Additionally, the geometric current density for CO2RR increases with the roughness of NpAu catalysts, which we attribute to the increased availability of active sites at NpAu catalysts. Together, the enhancement of CO2RR and the suppression of competing HER results in a drastic increase in the faradaic selectivity for CO2RR with increasing pore length and decreasing pore diameter, reaching near 100% faradaic efficiency for CO in the most extreme case. Interestingly, unlike the geometric current density, the specific current density for CO2RR has a more complicated relation with the roughness of the NpAu catalysts. We show that this is due to the presence of ohmic drop effects along the length of the porous channels. These ohmic drop effects render the pores partially electrocatalytically inactive and hence, they play an important role in tuning the CO2RR activity on nanoporous catalysts.

Graphical abstract: Effect of pore diameter and length on electrochemical CO2 reduction reaction at nanoporous gold catalysts

Supplementary files

Article information

Article type
Edge Article
Submitted
19 Oct 2021
Accepted
22 Feb 2022
First published
22 Feb 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2022,13, 3288-3298

Effect of pore diameter and length on electrochemical CO2 reduction reaction at nanoporous gold catalysts

A. Goyal, C. J. Bondue, M. Graf and M. T. M. Koper, Chem. Sci., 2022, 13, 3288 DOI: 10.1039/D1SC05743J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements