Issue 17, 2022

Interpretation of Mott–Schottky plots of photoanodes for water splitting

Abstract

A large body of literature reports that both bismuth vanadate and haematite photoanodes are semiconductors with an extremely high doping density between 1018 and 1021 cm−3. Such values are obtained from Mott–Schottky plots by assuming that the measured capacitance is dominated by the capacitance of the depletion layer formed by the doping density within the photoanode. In this work, we show that such an assumption is erroneous in many cases because the injection of electrons from the collecting contact creates a ubiquitous capacitance step that is very difficult to distinguish from that of the depletion layer. Based on this reasoning, we derive an analytical resolution limit that is independent of the assumed active area and surface roughness of the photoanode, below which doping densities cannot be measured in a capacitance measurement. We find that the reported doping densities in the literature lie very close to this value and therefore conclude that there is no credible evidence from capacitance measurements that confirms that bismuth vanadate and haematite photoanodes contain high doping densities.

Graphical abstract: Interpretation of Mott–Schottky plots of photoanodes for water splitting

Supplementary files

Article information

Article type
Edge Article
Submitted
17 Nov 2021
Accepted
31 Mar 2022
First published
31 Mar 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 4828-4837

Interpretation of Mott–Schottky plots of photoanodes for water splitting

S. Ravishankar, J. Bisquert and T. Kirchartz, Chem. Sci., 2022, 13, 4828 DOI: 10.1039/D1SC06401K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements