Issue 19, 2022

Timing matters: pre-assembly versus post-assembly functionalization of a polyoxovanadate–organic cuboid

Abstract

The pre-assembly and post-assembly approaches in the functionalization of a polyoxovanadate–organic cuboid, [{V6S}8(QPTC)8{V3}2]10−, are discussed. We have shown that the two pathways have led to distinctly different systems, with either an expanded or contracted interior void space, when phenylphosphonate is introduced at different stages of the self-assembly. One leaves the cuboid framework largely intact, whereas the other results in a compact, twisted cuboid. Kinetic factors will have to be considered in the equilibrium of these complex processes. Furthermore, the exceptional stability of these polyoxometalate–organic systems facilitates mass spectrometric characterization, which confirms the composition of the complexes and also indicates that the methoxide groups on the vanadium cluster nodes are labile. The results will help deepen the mechanistic understanding of the formation mechanisms of polyoxovanadate-based metal–organic cages and other functionalized polyoxovanadate clusters in general.

Graphical abstract: Timing matters: pre-assembly versus post-assembly functionalization of a polyoxovanadate–organic cuboid

Supplementary files

Article information

Article type
Edge Article
Submitted
26 Jan 2022
Accepted
06 Apr 2022
First published
14 Apr 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 5718-5725

Timing matters: pre-assembly versus post-assembly functionalization of a polyoxovanadate–organic cuboid

J. Guo, J. Liu, Y. Cui, C. Liu, Y. Wang, M. Wang, D. Huang, G. Chen, W. Wang, D. Xia and X. Fang, Chem. Sci., 2022, 13, 5718 DOI: 10.1039/D2SC00533F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements