Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium–sulfur batteries†
Abstract
The practical application of lithium–sulfur (Li–S) batteries is seriously hindered by severe lithium polysulfide (LiPS) shuttling and sluggish electrochemical conversions. Herein, the Co9S8/MoS2 heterojunction as a model cathode host material is employed to discuss the performance improvement strategy and elucidate the catalytic mechanism. The introduction of sulfur vacancies can harmonize the chemisorption of the heterojunction component. Also, sulfur vacancies induce the generation of radicals, which participate in a liquidus disproportionated reaction to reduce the accumulation of liquid LiPSs. To assess the conversion efficiency from liquid LiPSs to solid Li2S, a new descriptor calculated from basic cyclic voltammetry curves, nucleation transformation ratio, is proposed.